

Co-funded by the Horizon 2020 programme of the European Union







#### Sustainable Energy Webinar Odyssee-Mure webinar series on Energy Efficiency organised by Leonardo Energy 25 January 2017

### Energy Efficiency Networks in Industry

Barbara Schlomann and Wolfgang Eichhammer Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe, Germany



## Table of Contents

- The EU project ODYSSEE-MURE
- The concept of Energy Efficiency Networks (EENs)
- How EENs address barriers to energy efficiency
- Case Study for Germany: Learning Networks for Energy Efficiency (LEEN)
- Success factors of Energy Efficiency Networks
- Conclusions and Outlook



## THE EU PROJECT ODYSSEE-MURE





#### **ODYSSEE - MURE**

- The webinar is organized within the framework of the ODYSSEE-MURE project
- A summary of the contents is published in a policy brief at http://www.odyssee-mure.eu/publications/policy-brief/
- The project is supported by the Horizon 2020 programme of the European Commission and coordinated by ADEME
- The present project covers 31 countries (all EU MS, Norway, Serbia) and Switzerland)
- The heart of the project are two databases:

**ODYSSEE**: energy efficiency and  $CO_2$  indicators (about 180 indicators) based on energy consumption data by sector and end-use and their drivers (about 600 main data series)  $\rightarrow$  managed by Enerdata

**MURE**: structured description of past, present and planned energy efficiency policies in the EU and all partner countries  $\rightarrow$  managed by Fraunhofer ISI and ISINNOVA

All information available on the website: www.odyssee-mure.eu



# THE CONCEPT OF ENERGY EFFICIENCY NETWORKS (EEN)



# The link between energy efficiency (EE) potentials, barriers and policies

#### **Cost-effective EE Potentials in industry**

- Economic Potential: cost-effective from a social perspective
- Profitable Potential: cost-effective from an individual perspective
- → Technologies behind these cost-effective potentials: fans, pump systems, cooling devices, compressed air systems, system optimisation, CHP

#### Barriers to EE in industry

- Information and knowledge gaps on EE potentials and financial support
- Fear of negative impact on product quality
- Uncertain economic and legal framework conditions
- Lack of capital
- Low priority / High transaction costs for EE investment

#### **EE Policies for industry**

- Co-operative measures
- Financial
- Fiscal/Tariffs
- Information/Education/Training
- Legislative measures
- New market-based instruments

All main EE policies for industry in the EU, all MS and CH, NO, RS are described in MURE

#### Energy Efficiency Networks (EENs)



## International spread of the concept of EENs



#### **Characteristics of Energy Efficiency Networks (EENs)**

- Uniform goal: increase energy efficiency in a company
- Some common characteristics:
  - Exchange of energy efficiency experiences in moderated meetings
  - ✓ Consultations with energy efficiency experts
- But: different forms with regard to institutional structure, geographical scope, number/size of companies and services offered



# HOW ENERGY EFFICIENCY NETWORKS ADDRESS BARRIERS TO ENERGY EFFICIENCY



#### Barriers to EE in companies 🛑 How EENs remove barriers

- Information and knowledge gaps on EE potentials and financial support
- Fear of negative impact on product quality
- Uncertain economic and legal framework conditions
- Lack of capital
- Low priority of EE investment
- High transaction costs for EE investment

- Raising awareness of costeffective saving potentials
- Regular meetings → capacity building in companies
- Increasing transparency about energy use → implementation of energy management systems or other monitoring tools
- Providing information about private and public financing of energy efficiency investments
- Making energy efficiency a higher investment priority



# CASE STUDY FOR GERMANY: LEARNING NETWORKS FOR ENERGY EFFICIENCY (LEEN)



#### History of EENs in Germany





## Learning Energy Efficiency Networks – The LEEN Principles

- 10-15 participating companies:
  - ✓ Energy cost > 500.000 €/a
  - Willingness for an active exchange of information in regular meetings and to save energy
  - Support by the Company Management
- LEEN standard obligatory (compliant to ISO 50001)



#### LEEN – The concept

| initiation<br>(Phase 0)                                                                   |                           | energy review<br>(Phase 1)                                                                     |                  | network operation<br>(Phase 2)                                                                                                                                |                    |  |  |
|-------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|
| presentation of the<br>LEEN-Concept<br>compilation of the<br>network<br>network agreement | official start of network | identification of<br>profitable energy<br>savings<br>site inspection<br>initial savings report | target agreement | site inspections<br>lectures on an<br>efficiency topic<br>presentation of<br>realized measures<br>general exchange<br>of experiences<br>monitoring of results | network completion |  |  |
| communication on network activities                                                       |                           |                                                                                                |                  |                                                                                                                                                               |                    |  |  |



### Scope of the LEEN Pilot Project

- 30 Networks in Germany
- Energy costs of ~1 bn. €/a
- Energy consupmption >15 TWh/a
- CO2-emissions> 5 Mio. t/a

#### Sectoral Coverage

- 74% Industry,
- 5% Health, 3% Utilities, 3% Trade

54% of the network companies have energy costs between 500.000 und 4 Mio. € p.a.





#### Sectoral coverage of the LEEN Pilot Project



# Energy efficiency measures implemented in the LEEN Pilot Project



# Example: Cost saving potentials found in network companies

|               | Type of auxiliary equipment                                       | EE potential | Internal rate<br>of return |
|---------------|-------------------------------------------------------------------|--------------|----------------------------|
| 11 MW         | Air compressor station                                            | 30 %         | 20%                        |
| 25 MW         | Heat and steam generation                                         | 35 %         | 25 %                       |
| 4 MW          | Waste heat recovery to preheat glass raw materials<br>and cullets | 40 %         | 18 %                       |
| 90 <u>kW</u>  | Water circulation pumps                                           | 25-35 %      | 20%                        |
| 75 <u>kW</u>  | Lighting of a storage hall and a production hall                  | 20-30 %      | 15 %                       |
| 100 <u>kW</u> | Air compressor station<br>(Valves und regulation by the staff)    | 25 %         | 20%                        |
| 1 MW          | Waste heat use of plastics production machines                    | 40 %         | 18%                        |



#### Savings achieved in the LEEN Pilot Project



#### Range of investments in the LEEN Pilot Project





## The LEEN Pilot Project: Annual energy savings per network





## Overall success of the LEEN Pilot Project: Facts and Figures

- 180.000 Euro reduction in energy cost per company
- CO2-reduction:2.4 % per year
- EE increase:2.1 % per year
- 10 new economic EE measures per company
- 30 % internal rate of return of the implemented EE measures



Very high implementation of advice gathered within the network activities



Majority sees high or very high benefit in their network activities





### Other types of EENs in Germany

- 500 Energy Efficiency Networks Initiative of the German government shows a greater spread in the size of the participating companies and in the number of companies in a network compared to the LEEN networks.
- Mari:e: Networks for small and medium-sized companies with energy costs between €30,000 and €500,000 per year with a less demanding energy management system.
- Branch-specific networks in industries or company groups that do not compete in terms of energy costs (e.g. hotels and restaurants).
- Corporation-internal networks where several production sites of one corporation work together in one network.
- Municipal Energy Efficiency Networks for cities with up to 200,000 inhabitants or networks for the corresponding counties/districts.

https://www.energie-effizienz-netzwerke.de/



## SUCCESS FACTORS OF ENERGY EFFICIENCY NETWORKS



#### **General success factors for EENs**

- Network structure that provides all the services required to remove the different economic and non-economic barriers.
- Provision of tools and standardised guidelines to lower implementation and transaction costs and ensure a high quality of energy savings (e.g. the LEEN standard).
- Specification of a clear time frame for the network.
- Providing training for those operating the network (managers, moderators, consultants) and for the staff in the participating companies.
- Developing a sustainable business model for EENs that reduces dependency on government support.



## **CONCLUSIONS AND OUTLOOK**



#### **Conclusions and Outlook**

- The concept of EENs was successful in improving energy efficiency in companies → new network initiatives can build on the success factors derived from previous EENs
- The concept convinced the German government to establish 500 new EENs and many other countries inside and outside Europe to rely on this EE instrument
- EENs not only contribute to reducing energy consumption and energy costs, but also to other benefits of energy efficiency, e.g.:
  - ✓ climate protection
  - ✓ the development of a market for energy services
  - reducing the burden on the energy infrastructure and the dependence on energy imports
- Worldwide dissemination of the concept of EENs including some basic requirements to ensure the success of the instrument is a conceivable and desirable goal for the near future



### More information

For more information on the products of the ODYSSEE-MURE project see <u>http://www.odyssee-mure.eu/</u>

For more information on the LEEN networks in Germany see <u>http://leen.de/en/</u> <u>https://www.energie-effizienz-netzwerke.de/</u> (only in German)

For more details on Energy Efficiency Networks in other countries see International Partnership for Energy Efficiency Cooperation (IPEEC), Energy Efficiency Networks – An effective policy to stimulate energy efficiency, OECD/IPEEC, 2016.

https://ipeec.org/upload/publication\_related\_language/pdf/155.pdf

More references are also given in the policy brief accompanying this webinar: <u>http://www.odyssee-mure.eu/publications/policy-brief/networks-energy-efficiency.html</u>



# Thank you for your attention **Questions?**

**ODYSSEE-MURE website:** <u>www.odyssee-mure.eu</u>

- **ODYSSEE and MURE database**
- **ODYSSEE and MURE facilities** •
- Several publication on energy efficiency trends and policies: •
  - Policy briefs
  - Sectoral profiles
  - Brochures on indicator and policy analysis
  - Country profiles
  - National reports by country

#### Contact

Barbara Schlomann and Wolfgang Eichhammer

Fraunhofer Institute for Systems and Innovation Research ISI

barbara.schlomann@isi.fraunhofer.de

wolfgang.eichhammer@isi.fraunhofer.de

